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Abstract. The dependence of the pseudo-scalar meson masses and decay constants on sea and valence quark
masses is compared to next-to-leading order (NLO) chiral perturbation theory (ChPT). The numerical
simulations with two light dynamical quark flavors are performed with the Wilson quark lattice action at
gauge coupling β = 5.1 and hopping parameters κ = 0.176, 0.1765, 0.177 on a 164 lattice. O(a) lattice
artifacts are taken into account by applying chiral perturbation theory for the Wilson lattice action. The
values of the relevant combinations of Gasser–Leutwyler constants L4, L5, L6 and L8 are estimated.

1 Introduction

The low energy dynamics of strong interactions in the
pseudo-Goldstone boson sector of QCD is constrained by
the non-linear realization of spontaneously broken chi-
ral symmetry [1]. In an expansion in powers of momenta
and light quark masses a few low energy constants – the
Gasser–Leutwyler constants – appear which parameter-
ize the strength of interactions in the low energy chiral
Lagrangian [2]. The Gasser–Leutwyler constants are free
parameters which can be constrained by analyzing exper-
imental data. In the framework of lattice regularization
they can be determined from first principles by numer-
ical simulations. In experiments one can investigate pro-
cesses with different momenta but the quark masses are, of
course, fixed by nature. In numerical simulations there is,
in principle, much more freedom because, besides the pos-
sibility of changing momenta, one can also freely change
the masses of the quarks. This allows for a precise deter-
mination of the Gasser–Leutwyler constants – once the
simulations reach high precision. First steps towards this
goal have recently been done by several authors [3–6] in-
cluding our Collaboration [7–9].

The main difficulty for numerical simulations in lattice
QCD is to reach the regime of light quark masses where
ChPT is applicable. The reason is the critical slowing down
of simulation algorithms for small quark masses and lat-
tice spacings. We apply the two-step multi-boson (TSMB)
algorithm [10] which allows one to perform simulations
with small quark masses within the range of applicability
of next-to-leading order (NLO) ChPT [7,8].

Another important aspect of investigating the quark
mass dependence in numerical simulations is the possi-
bility to use ChPT for the extrapolation of the results
to the physical values of u- and d-quark masses which
would be very difficult to reach otherwise. In fact, ChPT
can be extended by changing the valence quark masses in
quark propagators independently from the sea quark mas-
ses in virtual quark loops which are represented in the
path integral by the quark determinant. In this way one
arrives at partially quenched chiral perturbation theory
(PQChPT) [11–13]. The freedom of changing valence and
sea quark masses substantially contributes to the power of
lattice QCD both in performing quark mass extrapolations
and in determining the values of the Gasser–Leutwyler
constants [14].

For a fast convergence of numerical results to the con-
tinuum limit it is important to explicitly deal with the
leading O(a) lattice artifacts. An often used method is the
application of the O(a) improved lattice action [15]. We
apply an alternative technique [16] which in the pseudo-
Goldstone boson sector is equivalent to the O(a) improve-
ment of the lattice action. In this method the (unimproved)
Wilson action is used in the Monte Carlo generation of
gauge configurations and the O(a) effects are compensated
in PQChPT itself. This means that we apply chiral pertur-
bation theory for the Wilson lattice action. Our calculations
showed that in practice this method gives results with good
precision [9].

The plan of this paper is as follows: in the next two
sections we collect the NLO (PQ)ChPT formulas for ratios
of pseudo-scalar meson masses and decay constants. In
Sect. 2 a discussion of the general form of the NNLO tree-
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graph corrections is also included. In Sect. 4 the results
of numerical simulations is presented. The last section is
devoted to a summary and discussion.

2 Valence quark mass dependence

In this paper we use the notation introduced in [9] which
slightly differ from those of [14,16]. The dimensionless vari-
ables for quark masses and O(a) lattice artifacts are de-
noted, respectively, by

χA ≡ 2B0mq

f2
0

, ρA ≡ 2W0acSW

f2
0

. (1)

Here mq is the quark mass, a the lattice spacing, B0 and
W0 are parameters of dimension mass and (mass)3, re-
spectively, which appear in the leading order (LO) chiral
effective Lagrangian, cSW is the coefficient of the O(a) chi-
ral symmetry breaking term and f0 is the value of the pion
decay constant at zero quark mass. (Its normalization is
such that the physical value is f0 � 93 MeV.) For fixed sea
quark mass χS the dependence of the pseudo-scalar meson
mass and decay constant on the valence quark mass χSV
can be described by the variables

ξ ≡ χSV

χS
, ηS ≡ ρS

χS
. (2)

For instance, in case of a number of Ns equal mass sea
quarks the ratios of decay constants are given by

RfVV ≡ fVV

fSS
= 1 + 4(ξ − 1)χSLS5

−NsχS

64π2 (1 + ξ + 2ηS) log
1 + ξ + 2ηS

2

+
NsχS

32π2 (1 + ηS) log(1 + ηS) , (3)

and similarly

RfVS ≡ fVS

fSS
= 1 + 2(ξ − 1)χSLS5

+
χS

64Nsπ2 (ξ−1)− χS

64Nsπ2 (1+ηS) log
ξ + ηS

1 + ηS

− NsχS

128π2 (1 + ξ + 2ηS) log
1 + ξ + 2ηS

2

+
NsχS

64π2 (1 + ηS) log(1 + ηS) . (4)

LSk (k = 5) denotes the relevant Gasser–Leutwyler coeffi-
cient at the scale f0

√
χS. This is related to L̄k defined at

the scale f0 and L′
k defined at the generic scale µ according

to

LSk = L̄k − ck log(χS) = L′
k − ck log

(
f2
0

µ2 χS

)
. (5)

with the constants ck (k = 4, 5, 6, 8) given below. Simi-
larly, the corresponding relations for the coefficients WSk

introduced in [16] are

WSk = W̄k − dk log(χS) = W ′
k − dk log

(
f2
0

µ2 χS

)
. (6)

The constants in (5) and (6) are given by

c4 =
1

256π2 , c5 =
Ns

256π2 ,

c6 =
(N2

s + 2)
512N2

s π2 , c8 =
(N2

s − 4)
512Nsπ2 , (7)

respectively,

d4 =
1

256π2 , d5 =
Ns

256π2 ,

d6 =
(N2

s + 2)
256N2

s π2 , d8 =
(N2

s − 4)
256Nsπ2 . (8)

For the valence quark mass dependence of the (squared)
pseudo-scalar meson masses one can consider, similarly to
(3) and (4), the ratios

RmVV ≡ m2
VV

m2
SS

, RmVS ≡ m2
VS

m2
SS

. (9)

In the present paper we prefer to divide these ratios by
the tree level dependences and consider

RnVV ≡ m2
VV

ξm2
SS

= 1 − ηS
(ξ − 1)

ξ

+8(ξ − 1)χS(2LS8 − LS5)

+8Ns
(ξ − 1)

ξ
ηSχS(LS4 − WS6)

+
χS

16Nsπ2

(ξ − 1)
ξ

(ξ + ηS)

− χS

16Nsπ2 (1 + 2ηS) log(1 + ηS) (10)

+
χS

16Nsπ2

(2ξ2−ξ−ηS+3ηSξ)
ξ

log(ξ + ηS) ,

and

RnVS ≡ 2m2
VS

(ξ + 1)m2
SS

= 1 − ηS
(ξ − 1)
(ξ + 1)

+4(ξ − 1)χS(2LS8 − LS5)

+8Ns
(ξ − 1)
(ξ + 1)

ηSχS(LS4 − WS6)

− χS

16Nsπ2 (1 + 2ηS) log(1 + ηS) (11)

+
χS

16Nsπ2

(ξ2 + ξ + ηS + 3ηSξ)
(ξ + 1)

log(ξ + ηS) .
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A useful quantity is the double ratio of decay constants
[17] which does not depend on any of the NLO coefficients.
In other words there one can see the chiral logarithms
alone. The NLO expansion for this quantity is

RRf ≡ f2
VS

fVVfSS
= 1 +

χS

32Nsπ2 (ξ − 1)

− χS

32Nsπ2 (1 + ηS) log
ξ + ηS

1 + ηS
. (12)

The double ratio of the pion mass squares [18] corre-
sponding to (10) and (11) has the NLO expansion

RRn ≡ 4ξm4
VS

(ξ + 1)2m2
VVm2

SS
= 1 − ηS(ξ − 1)2

ξ(ξ + 1)

+
χS(ξ2 + ξ + ηS + 3ηSξ2) log(ξ + ηS)

16Nsπ2ξ(ξ + 1)

−χS(2ηS + 1) log(1 + ηS)
16Nsπ2

−χS(ξ − 1)(ξ + ηS)
16Nsπ2ξ

+
8NsχSηS(ξ − 1)2

ξ(ξ + 1)
(LS4 − WS6) . (13)

2.1 Quadratic corrections

A complete NNLO (i. e. two-loop) calculation in PQChPT
for our physical quantities is not yet available. Neverthe-
less, the general form of NNLO tree-graph (“counterterm
insertion”) contributions can be given [19]1. For instance,
one has for the pion mass square:

δm2
AB

m2
AB

= α1χ
2
S + α2χS(χA + χB)

+α3(χA + χB)2 + α4(χ2
A + χ2

B) . (14)

(Here A and B denote generic quark indices: S is the label
for the sea quarks, V for valence quarks.) For the pion decay
constant there is a similar expression. This information is
very useful in order to estimate the importance of the
NNLO terms in our present range of quark masses.

The general characteristic of the NNLO terms is that
they are proportional to the quark mass square: χ2

S. (Here
we only consider terms in the continuum limit and hence
neglect lattice artifacts. This will be to some extent jus-
tified a posteriori by the observed smallness of the O(a)
terms.) Neglecting loop contributions, which are at the
NLO order relatively small, the dependence on the quark
mass ratio ξ is at most quadratic and can, therefore, be
represented by terms proportional to (ξ − 1) and (ξ − 1)2.
Therefore, these contributions have the generic form

DXχ2
S(ξ − 1) + QXχ2

S(ξ − 1)2 . (15)
1 We thank the authors for communicating us the content

of this paper prior to publication

Here X denotes an index specifying the considered ratio
as, for instance, X = fVV, nVS etc. for the single ratios
and X = fd and X = nd for the double ratios RRf and
RRn, respectively. The NLO tree-graph contributions for
the single ratios Rf and Rn are also proportional to (ξ−1).
These can be parametrized as LXχS(ξ−1) (for instance, we
have LfVV ≡ 4L5 and LnVV ≡ 8(2L8−L5)). The inclusion
of DX -type terms is equivalent to a linear dependence of
the effective LX for fixed χS:

Leff
X = LX + DXχS . (16)

At this point one has to remember that mathematically
speaking – in order to completely remove the effect of
higher order terms – LX is defined in the limit χS → 0.

The NNLO coefficients are not all independent but sat-
isfy the relations

DfVS =
1
2
DfVV , DnVS =

1
2
DnVV ,

Dfd = 0 , Dnd = 0 ,

Qfd = 2QfVS − QfVV +
1
4
L2

fVV ,

Qnd = 2QnVS − QnVV +
1
4
L2

nVV . (17)

The first line is a consequence of the general structure
of the NNLO tree-graph contributions. The last two lines
follow from the definition of RRf and RRn if one only
considers NLO and NNLO tree-graph contributions.

We shall see in Sect. 4 that in our range of quark mas-
ses the NNLO tree-graph contributions of the form (15)
are important but can be approximately determined by
global fits. In this way the NLO constants Lk are better
determined. Observe that a determination of the DX is
only possible in our analysis if different sea quark masses
are included (see below).

2.2 O(a2) corrections

The idea of including leading lattice artifacts in the low
energy effective Lagrangian for the Wilson lattice action
can be extended to higher orders in lattice spacing. Indeed,
in writing this paper we have seen two recent publications
about the inclusion of O(a2) corrections [20,21]. The gen-
eral formulas derived in these papers for the O(a2) terms
imply that in the formulas for the pion mass-squared ratios
(10), (11) and (13) there are only very little changes. In
fact, the changes can be summarized by the replacement

ηS(LS4 − WS6) −→ ηS(LS4 − WS6)

+
η2
S

Ns
(NsWS4 + WS5 − 2NsW

′
S6 − 2W ′

S8) . (18)

Here W ′
S6 and W ′

S8 denote some new low energy con-
stants appearing in the O(a2) part of the effective La-
grangian. This means that fitting the valence quark mass
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dependence with our formulas (10), (11) and (13) effec-
tively takes into account also O(a2) corrections.

Concerning the ratios of the pion decay constants in
(3), (4) and (12) the situation is expected to be similar
but there, in addition to the O(a2) terms, also new types
of O(amq) terms may appear.

3 Sea quark mass dependence

The dependence on the sea quark mass can be treated
similarly to the valence quark mass dependence considered
in Sect. 2. Here one chooses a “reference value” of the sea
quark mass χR and determines the ratios of the coupling
and decay constant as a function of

σ ≡ χS

χR
, τ ≡ ρS

ρR
. (19)

Instead of τ one can also use

ηS ≡ ρS

χS
, ηR ≡ ρR

χR
, (20)

which satisfy
τ

σ
=

ηS

ηR
. (21)

With this we have for the decay constants

RfSS ≡ fSS

fRR
= 1 + 4(σ − 1)χR(NsLR4 + LR5)

+4(ηSσ − ηR)χR(NsWR4 + WR5)

−NsχR

32π2 σ(1 + ηS) log[σ(1 + ηS)]

+
NsχR

32π2 (1 + ηR) log(1 + ηR) (22)

and for the mass squares

RnSS ≡ m2
SS

σm2
RR

= 1 + ηS − ηR

+8(σ − 1)χR(2NsLR6+2LR8−NsLR4−LR5)

+8(ηSσ − ηR)χR(2NsWR6 + 2WR8

−NsWR4 − WR5 − NsLR4 − LR5)

+
χR

16π2Ns
σ(1 + 2ηS) log[σ(1 + ηS)]

− χR

16π2Ns
(1 + 2ηR) log(1 + ηR) . (23)

Of course, the coefficients LRk and WRk (k = 4, 5, 6, 8) are
now defined at the scale f0

√
χR therefore in the relations

(5) and (6) χS is replaced by χR.
The logarithmic dependence of the LSk and WSk have

to be taken into account also in simultaneous fits of the
valence quark mass dependence at several sea quark mass

values. Choosing a fixed reference sea quark mass χR we
have from (5) and (6) with µ = f0

√
χR

LSk = LRk − ck log σ , WSk = WRk − dk log σ . (24)

The NLO PQChPT formulas for the valence quark mass
dependence in terms of the reference sea quark mass are
obtained by the following substitutions in (3), (4), (10)–
(13):

χS → σχR , LSk → LRk , WSk → WRk ,

log(1 + ηS) → log[σ(1 + ηS)] ,

log(ξ + ηS) → log[σ(ξ + ηS)] ,

log(1 + ξ + 2ηS) → log[σ(1 + ξ + 2ηS)] . (25)

An important feature of both the valence and sea quark
mass dependences considered in the present work is that
they are ratios taken at a fixed value of the gauge coupling
(β). These are renormalization group invariants indepen-
dent from the Z-factors of multiplicative renormalization
since the Z-factors only depend on the gauge coupling and
not on the quark mass. Taking ratios of pion mass squares
and pion decay constants at varying quark masses has,
in general, the advantage that quark mass independent
corrections – for instance of O(a) and/or O(a2) – cancel.

4 Numerical simulations

We performed Monte Carlo simulations with Ns = 2 de-
generate sea quarks on a 164 lattice at β = 5.1 and three
values of κ: κ0 = 0.176, κ1 = 0.1765 and κ2 = 0.177. For
the reference sea quark mass we choose κR ≡ κ0 = 0.176.
A summary of the simulation points is reported in Ta-
ble 1, where also the set-up of the TSMB algorithm for the
different simulation points can be found. The gauge field
configurations collected for the evaluation of the physi-
cal quantities are separated by 10 TSMB update cycles
consisting out of boson field and gauge field updates and
noisy correction steps. It turned out that these configura-
tions were statistically independent from the point of view
of almost all secondary quantities considered. Exceptions
are r0/a and Mr (see below) where autocorrelation lengths
of 2–5 units in the configuration sequences appear.

We investigated for each simulation point the valence
quark mass dependence of the pseudo-Goldstone boson
spectrum and decay constants; the values of the valence κ
considered for each simulation point are reported in Ta-
ble 2. In these intervals the valence quark masses are ap-
proximately changing in the range 1

2msea ≤ mvalence ≤
2msea.

A rough estimate of the sea quark mass range can be
obtained by considering the quantity Mr ≡ (r0mπ)2, which
for the strange quark gives Mr ≈ 3.1. (Here r0 ≈ 0.5 fm
is the Sommer scale parameter which characterizes the
distance scale intrinsic to the gauge field.) In our simu-
lation points the value of Mr ranges between Mr ≈ 2.10
and Mr ≈ 1.09, corresponding to about 2

3 and 1
3 of the
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Table 1. Parameters of the simulations: all simulations were done at β = 5.10
with determinant breakup Nf = 1 + 1. The other TSMB-parameters are
the interval of polynomial approximasions [ε, λ] and the polynomial orders
n1,2,3 [10]

Run κ Configurations ε λ n1 n2 n3

0 0.1760 1811 4.50 · 10−4 3.0 40 210 220
1 0.1765 746 2.50 · 10−4 3.0 40–44 280 260–340
2 0.1770 1031 3.75 · 10−5 3.0 54 690 840

Table 2. Values of the valence quark hopping parameter

Run 0 1 2
κsea 0.1760 0.1765 0.1770

κvalence 0.1685 0.1710 0.1743
0.1705 0.1718 0.1747
0.1720 0.1726 0.1751
0.1730 0.1734 0.1754
0.1735 0.1742 0.1759
0.1745 0.1750 0.1763
0.1750 0.1758 0.1767
0.1770 0.1772 0.1775
0.1775 0.1778 0.1779
0.1785 0.1785 0.1783
0.1790 0.1791 0.1787
0.1800 0.1797 0.1791

value for the strange quark mass. Since the valence quark
masses roughly go down to mvalence � 1

2msea, they reach
mvalence � 1

6ms. In our configuration samples we did not
encounter problems with “exceptional gauge configura-
tions” – in spite of the smallness of the valence quark
mass. This means that the quark determinant effectively
suppresses such configurations.

Standard methods for the extraction of the relevant
physical quantities have been applied (a more detailed de-
scription is given in our previous paper [7] and in [22]).
Statistical errors have been obtained by the linearization
method [23, 24] which we found more reliable than jack-
knifing on bin averages.

Within a mass independent scheme of renormalization
– defined at zero quark mass – the Z-factors of multiplica-
tive renormalization depend only on the gauge coupling
(β) and not on the quark mass (κ). Similarly, the lattice
spacing a is also a function of the gauge coupling alone [25].
Therefore, since our simulation points are at fixed gauge
coupling β = 5.1, the ratios of the sea quark masses can
be obtained by taking ratios of the measured bare quark
masses in lattice units Zqamq. Here Zq is the multiplica-
tive renormalization factor for the quark mass which is
the ratio of the Z-factors of the pseudo-scalar density and
axial-vector current (Zq = ZP/ZA) because we determine
the quark mass by the PCAC-relation: mq ≡ mPCAC

q [7].
(Of course, in the valence quark ratios the factor Zqa also
cancels trivially.) The obtained values of the sea quark
mass ratios σi ≡ mqi/mq0 (i = 1, 2) are given in Table 3
together with some other basic quantities.

Table 3. The values of some basic quantities in our simulation
points. Statistical errors in last digits are given in parentheses.
We define Mr = (r0mπ)2 and σi = mqi/mq0

κ κ0 κ1 κ2

r0/a 2.149(15) 2.171(88) 2.395(52)
amπ 0.6747(14) 0.6211(22) 0.4354(68)
Mr 2.103(26) 1.824(41) 1.088(47)
Zqamq 0.07472(32) 0.06247(51) 0.03087(36)
σi 1.0 0.8361(52) 0.4132(34)

Note that by identifying the quark mass ratios in the
ChPT formulas with the ratios of the PCAC quark masses
(“axial-vector Ward identity quark masses”) one assumes
that these two kinds of renormalized quark masses are pro-
portional to each other. As it is shown, for instance, by
(48) in [21] this is indeed the case – apart from lattice arti-
facts of O(amq) and O(a2). The quark mass independent
part of the O(a2) terms are cancelled by taking ratios.
The remaining quark mass dependent lattice artifacts are
neglected in the present paper.

The critical value of the hopping parameter where the
quark mass vanishes can be estimated by a quadratic ex-
trapolation using the values of σ1,2:

σi ≡ mqi

mq0
=

(κ−1
i − κ−1

cr ) + dσ(κ−1
i − κ−1

cr )2

(κ−1
0 − κ−1

cr ) + dσ(κ−1
0 − κ−1

cr )2
. (26)

The values of σ1,2 in Table 3 give the solution κcr=0.1773(1)
and dσ = −11.2(8). (The relatively large absolute value of
dσ shows that the quadratic term in the extrapolation is
important.)

The value of the lattice spacing a can be inferred from
the value of r0/a at κ = κcr. This can also be determined
by a quadratic extrapolation of the values of r0/a given
in Table 3 with the result: r0(κcr)/a = 2.65(7). Taking,
by definition, r0(κcr) = 0.5 fm this gives for the lattice
spacing: a = 0.189(5) fm.

The physical volume following from the lattice spacing
is comfortably large: L � 3.0 fm. Since the minimal value of
the pion mass in lattice units in our points is ammin

π � 0.43
for sea quarks and ammin

π � 0.30 for the lightest valence
quark, we have Lmπ ≥ 4.8.

Another piece of information given by the values of Mr

is an estimate of the quark mass parameter χS in the ChPT
formulas. For instance, in the reference point we have from
r0f0 � 0.23 [26]: χestimate

R ≈ Mr/(r0f0)2 � 39.8.
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4.1 Valence quark mass dependence

For a fixed value of the sea quark mass χS the valence
quark mass dependence of the ratios RfVV,VS, RnVV,VS,
RRf and RRn is determined by five parameters:

χS , ηS , χSLS5 ,

χSLS4W6 ≡ χS(LS4 − WS6) ,

χSLS85 ≡ χS(2LS8 − LS5). (27)

The dependence is non-linear in ηS and linear in the rest.
After performing such fits of the data we realized that

the sea quark mass dependence is not consistent with the
NLO PQChPT formulas. In particular, the best fit values
of the χS have ratios considerably closer to 1 than σ1,2
in Table 3 and the change of the Lk with χS is also not
consistent with (24). This shows that NNLO effects are
important and, therefore, we tried fits including NNLO
tree-graph terms of the form given in (15). The list of the
relevant NNLO-parameters is

χ2
RDfVV,nVV , χ2

RQfVV,fVS,fd,nVV,nVS,nd . (28)

Qfd and Qnd have to satisfy the quadratic relations given
in the last line of (17) but in order to keep linearity we did
not impose these relations and fitted the eight parameters
in (28) independently. After performing the fits one can
check how well the relations for Qfd and Qnd are fulfilled.

The global fit of the valence quark mass dependence
for several values of the sea quark mass has twelve linear
parameters: the linear parameters in (27) with χS replaced
by χR

χR , χRLR5 ,

χRLR85 ≡ χR(2LR8 − LR5) ,

χRLR4W6 ≡ χR(LR4 − WR6) (29)

and the eight in (28). In addition there are the non-linear
parameters, in our case three of them: ηS = η0,1,2.

Multi-parameter linear fits are easy and, except for de-
generate situations, the chi-square always has a unique
well-defined minimum. Non-linear fits involving the η are
more problematic; therefore, we adopted the following pro-
cedure: performing non-linear fits at individual sea quark
mass values we obtained the starting values of η0,1,2. Then
for fixed values of η0,1,2 we performed a linear fit of the
twelve parameters in (28) and (29) and looked for a min-
imum of the chi-square as a function of η0,1,2. For the sea
quark masses we imposed the relation χS = σχR and for
the NLO-parameters the relations in (24) with the values
of σ1,2 given in Table 3. (The possible dependence of the
NNLO-parameters D and Q on σ has been neglected.) The
minimum of the chi-square after the non-linear minimiza-
tion is near

η0 = 0.07 , η1 = 0.03 , η2 = 0.02 . (30)

The minimum as a function of η0,1,2 is rather shallow but
definitely within the bounds 0 ≤ η0,1,2 ≤ 0.10. The mini-
mization of the chi-square of the linear fit does not change

Table 4. Values of best fit parameters for the valence quark
mass dependence. Quantities directly used in the fitting pro-
cedure are in bold face

χR 33.5(2.4)
χRLR4W6 5.24(38) · 10−2 LR4W6 1.564(71) · 10−3

χ2
RQnd 6.5(1.8) · 10−3 Qnd 5.80(79) · 10−6

χRLR5 10.06(44) · 10−2 LR5 3.00(19) · 10−3

χ2
RDfVV −9.3(1.7) · 10−2 DfVV −8.3(1.9) · 10−5

χ2
RQfVV −2.80(19) · 10−2 QfVV −2.50(50) · 10−5

χ2
RQfVS −2.197(45) · 10−2 QfVS −1.96(29) · 10−5

χ2
RQfd −0.99(14) · 10−2 Qfd −0.89(45) · 10−5

χRLR85 −2.10(12) · 10−2 LR85 −6.25(52) · 10−4

χ2
RDnVV −1.67(20) · 10−1 DnVV −1.49(10) · 10−4

χ2
RQnVV −8.44(67) · 10−2 QnVV −7.53(48) · 10−5

χ2
RQnVS −4.05(25) · 10−2 QnVS −3.61(29) · 10−5

the η substantially: already the starting values are close
to (30). This confirms the small value of ηS found in our
previous paper at β = 4.68 [9].

In contrast to the stable values of the η there are large
fluctuations in the basic parameter χR: one can obtain
values in the range 13 ≤ χR ≤ 40 depending on the set of
functions fitted, on the fit interval etc. This is presumably
the effect of our small number (only three) of sea quark
masses. In order to obtain more stable results we fixed
η0,1,2 according to (30) and first determined in a linear
fit the three parameters χR, χRLR4W6 and χ2

RQnd from
RRn. These parameters were then used as an input in the
linear fit of the remaining nine parameters.

All 18 valence quark mass dependences considered can
be reasonably well fitted. The best fit is shown by Figs. 1
and 2. The sum of the chi-squares of the linear fits is
χ2 � 300 for a number of degrees of freedom n.d.f. =
18 · 12 − 12 = 204. Most of the chi-squares comes from
the points with largest and smallest valence quark masses
where there are obviously some systematic deviations, too.
The parameters of best fit are given in Table 4. The values
in the table show that there are some discrepancies in both
relations in the last line of (17), but the deviations are not
very large. The first and second relation give −0.89(49) ·
10−5 � 2.05(39) · 10−5 and 0.52(9) · 10−5 � 0.92(8) · 10−5,
respectively.

The values of the NLO- and NNLO-parameters them-
selves are also shown in the right hand part of Table 4, with
errors determined (as always) by the linearization method.
With the help of the formulas in (5) and (6) one can also
transfer these results to the corresponding L and W at
some other renormalization scale different from f0

√
χR.

Going to the conventional renormalization scale µ = 4πf0
and multiplying by an overall factor 128π2 one obtains the
values of αk and ωk shown in Table 5.

Due to the unexpected smallness of the O(a) contri-
butions it is interesting to try a linear fit of the valence
quark mass dependences setting all O(a) terms to zero:
η0 = η1 = η2 = 0. This is a fit with eleven parame-
ters because in the formulas LS4W6 is always multiplied
by ηS. The result is a reasonable fit but the chi-square is
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Fig. 1. (RRn − 1), (RnVV − 1) and (RnVS − 1) for the three different sea quark mass values (full lines). Beside the fit the
unphysical contribution (proportional to ηS) is separately shown (broken lines)
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Fig. 2. (RRf − 1), (RfVV − 1) and (RfVS − 1) for the three different sea quark mass values (full lines). Beside the fit the
unphysical contribution (proportional to ηS) is separately shown (broken lines)
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Table 5. Values of combinations of the αk obtained from the best fit values in Table 4 and 6

α5 2.24(20)

α85 ≡ (2α8 − α5) 0.762(49) (α4 − ω6) 2.36(9)

α45 ≡ (2α4 − α5) 2.40(26) Λ4/f0 22.9(1.5) ω45 −1.7(1.8)

α6845 ≡ (4α6 + 2α8 − 2α4 − α5) 0.658(86) Λ3/f0 6.51(57) ω6845 −5.43(60)
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Fig. 3. NNLO tree-graph contribution at κ2 = 0.1770 where the sea quark mass is given by Mr � 1 (broken lines). The full
lines represent the total fits shown also in Figs. 1 and 2 which are the sums of the continuum NLO, the O(a) and NNLO terms

by about 10% larger then in the case of η0,1,2 �= 0. The
best fit values of the main parameters are in this case
χR = 36.1(1.0), α5 = 2.08(14), α85 = 0.502(46).

The NNLO tree-graph contributions are rather impor-
tant especially at κ = 0.176. From the point of view of the
NLO formulas the situation becomes better at κ = 0.177
but NNLO is still not negligible there; see Fig. 3. (At
κ = 0.1765 we have, of course, an intermediate situation

between κ = 0.176 and κ = 0.177.) In general, the NNLO
contributions are more important in the ratios RnVV and
RnVS than in RfVV and RfVS. In fact, the ratios RnVV
and RnVS at κ = 0.176 are dominated by NNLO. The
relative importance of NNLO terms is stronger for ξ > 1
than for ξ < 1. In the double ratios RRn and RRf the
NNLO terms are relatively unimportant.
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4.2 Sea quark mass dependence

The results from the fit of the valence quark mass depen-
dence can also be used in the investigation of the sea quark
mass dependence according to (22) and (23). In particu-
lar, the values (and errors) of χR and η0,1,2 are relevant
there. Besides these values and the known ratios of the sea
quark masses σ1,2 (see Table 3) two extra parameter pairs
appear, namely, for Ns = 2,

LR45 ≡ 2LR4 + LR5 , WR45 ≡ 2WR4 + WR5 (31)

in (22) and

LR6845 ≡ 4LR6 + 2LR8 − 2LR4 − LR5 ,

WR6845 ≡ 4WR6 + 2WR8 − 2WR4 − WR5 (32)

in (23).
Since we only have three sea quark mass values and

therefore two independent values of RfSS and RnSS a “fit”
actually means solving for the four unknowns. The results
are collected in Table 6. The corresponding values of the
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Table 6. Results for the parameters of the sea quark mass
dependence. Quantities directly used in the fitting procedure
are in bold face

LR45 4.34(28) · 10−3 Rf(σ=0) 0.415(19)
WR45 1.1(1.4) · 10−3

LR6845 −9.1(6.4) · 10−5 Rn(σ=0) 1.025(17)
WR6845 −5.52(48) · 10−3

α and ω are contained in Table 5. In this table also the
values of the universal low energy scales Λ3,4 are given.
(For the definitions see [26, 27] or (10) in [9].) Once the
parameters LR45 and LR6845 are known it is possible to
extrapolate the continuum NLO curves (without the O(a)
contributions) for RfSS and RnSS to zero sea quark mass;
see Fig. 4. The values of these curves at σ = 0 are also
given in Table 6.

The extrapolation of the full measured ratios, includ-
ing O(a) contributions, requires an extrapolation of ηS as
a function of σ which has, of course, a considerable uncer-
tainty. The behavior of the extrapolated curve is especially
sensitive to the assumed form of the ηS-extrapolation for
RnSS near zero. For instance, if the magnitude of the O(a)
contribution given by ρS = ηSχS is finite at zero, which
is reasonable to assume, then RnSS = m2

SS/(σm2
RR) has a

σ−1 singularity near zero. This is a manifestation of the
fact that different definitions of the “critical line” in the
(β, κ)-plane, for instance by m2

π = 0 or mPCAC
q = 0, in

general differ by lattice artifacts (in our case by O(a)). If,
however, ηS = ρS/χS would have a finite value at σ = 0
then there would be no such singularity. The two extrap-
olations shown in the lower part of Fig. 4 are examples of
these two cases.

Concerning the results on the parameters obtained from
the sea quark mass dependence (Table 6 and the second
half of Table 5) one has to remark that the assumption of
a quark mass independent lattice spacing a has an impor-
tant effect on them. Assuming a quark mass independent
Sommer scale parameter r0 would change these results sub-
stantially. (There would be small changes in the first half of
Table 5 due to the somewhat different values of the quark
mass ratios σ1,2, too.) For instance, the values of Λ4/f0
and Λ3/f0 would come out to be 16.1(1.1) and 30.4(2.9),
respectively, instead of the values given in the tables. As
it has been discussed above, the choice of a quark mass in-
dependent renormalization scheme requires a quark mass
independent lattice spacing and is not consistent with a
quark mass independent r0 [25,28]. Nevertheless, it is plau-
sible that in the continuum limit and in the limit of very
small sea quark masses r0/a becomes independent from
the sea quark mass and the differences between the values
for constant r0 and a disappear.

5 Summary and discussion

The results obtained in this paper for the Gasser–Leutwyler
constants (see Tables 4, 5 and 6) can only be taken as esti-
mates of the values in continuum. In order to deduce con-

tinuum values with controlled error estimates the left out
lattice artifacts have to be removed by performing simula-
tions at increasing β values and extrapolating the results
to a = 0. Reasonable next steps would be to tune the lat-
tice spacing to a � 0.13 fm on 243 · 48 and a � 0.10 fm on
323 · 64 lattices. This would require with the TSMB algo-
rithm by a factor of about 10 and 100 more computer time,
respectively. Our calculations near a � 0.20 fm should be
improved by going from 164 to 163 · 32 lattices in order
to improve the extraction of the physical quantities of in-
terest. The number of sea quark masses considered should
be increased to 5–6 towards smaller values. This will de-
crease the overall statistical errors considerably. We hope
to reach sea quark masses about msea � 1

6ms on 163 · 32
lattices in the near future.

General conclusions of the present work are the follow-
ing.
(1) Compensating O(a) effects in the pseudo-Goldstone
boson sector by introducing O(a) terms in the PQCh-
Lagrangian itself is a viable alternative to the O(a)-im-
provement of the lattice action. An extension to also treat
O(a2) effects in the PQCh-Lagrangian is possible [20, 21]
and has been partially taken into account also in the pre-
sent paper.
(2) The observed O(a) contributions in the pseudo-Gold-
stone boson sector are surprisingly small. The ratios of
the O(a)-parameters in the NLO PQCh-Lagrangian to the
quark masses ηS ≡ ρS/χS are in our present range of quark
masses ( 1

3ms ≤ msea ≤ 2
3ms) at the few percent level.

(3) Taking ratios of pion mass squares and pion decay
constants at fixed gauge coupling and varying quark mas-
ses has the advantage that the Z-factors of multiplicative
renormalization as well as all sorts of quark mass indepen-
dent corrections cancel.
(4) NNLO contributions in PQChPT are in our present sea
quark mass range rather important. In fact, they are more
important than the O(a) lattice artifacts. This introduces
new parameters in the multi-parameter fits which makes
the fitting procedure more difficult. The situation will be
better at smaller sea quark masses where the importance
of NNLO terms diminishes.

The present results strengthen the observation already
made in our previous paper [9] that the expected behavior
dictated by PQChPT sets in rather early – at relatively
large lattice spacings – once the quark masses are small
enough. Our present cut-off a−1 � 1 GeV is already a “high
energy scale” from the point of view of the pion dynam-
ics. As a consequence, it seems to us that the numerical
study of the pseudo-Goldstone boson sector of QCD is per-
haps the easiest field for obtaining new quantitative results
about hadron physics by lattice simulations.
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26. S. Dürr, hep-lat/0208051
27. H. Leutwyler, Nucl. Phys. Proc. Suppl. 94, 108 (2001),

hep-ph/0011049
28. R. Sommer, talk presented at the Tsukuba Lattice Con-

ference 2003, to be published in the Proceedings


